MANUAL DE DISEÑO DE PUENTES. Apéndice C Estimación de Empujes Sobre Muros de Contención


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MANUAL DE DISEÑO DE PUENTES. Apéndice C Estimación de Empujes Sobre Muros de Contención"

Transcripción

1 Apéndice C Estimación de Empujes Sobre Muros de Contención 67

2 APÉNDICE C. ESTIMACIÓN DE EMPUJES SOBRE MUROS DE CONTENCIÓN ALCANCE El presente Anexo documenta los métodos de análisis básicos que pueden emplearse para la estimación de los empujes de tierra sobre los muros de contención, de acuerdo a los casos en que deben ser considerados. El tema es de importancia para el diseño seguro de estribos y muros de protección, entre otros elementos de la subestructura de un puente, mas aun cuando se tienen que considerar los posibles efectos sísmicos, para lo cual se especifican criterios de diseño en base a la limitación de los desplazamientos, de acuerdo a lo establecido principalmente por la norma AASHTO, versión Las unidades empleadas corresponden al Sistema Internacional. 1. INTRODUCCIÓN El análisis de los empujes sobre las estructuras de contención es un tema complejo, que requiere de simplificaciones para su consideración en los cálculos de proyecto, en donde no solamente interesan las fuerzas actuantes sobre el muro de contención sino también el estado limite de cargas cuando ocurra la falla en el relleno. La teoría de Coulomb en base a una cuña deslizante de relleno, en torno al cual se plantea el equilibrio de fuerzas, ha sido la principal vía de solución para estos cálculos. Las fórmulas presentadas en este Anexo han sido desarrolladas con el método de Coulomb para suelos con propiedades uniformes; sin embargo, el método puede ser aplicado para suelos estratificados. En el análisis debe tenerse en cuenta las condiciones de estabilidad del relleno, las deflexiones esperadas en el muro, los procedimientos constructivos y toda posibilidad de movimiento o restricción del mismo en el muro. De acuerdo a ello, se considerarán los estados de empuje activo, de reposo o de empuje pasivo de tierras. Además, deberán estimarse los incrementos en el empuje de tierra ocasionados por sobrecargas superficiales, sea durante la construcción o debidas al trafico vehicular. Por otro lado, los efectos del agua en el incremento del empuje lateral o en las presiones de poro que origina el flujo cuando existe una diferencia de niveles de agua entre ambos lados del muro, deben ser analizados. Algunas consideraciones para su análisis se presentan a continuación. 68

3 . FORMULACION DEL EMPUJE DE TIERRAS Se considera que el empuje de tierras, en forma general, es linealmente proporcional a la profundidad del suelo, calculándose para una profundidad z con la siguiente expresión. p = k h γ s g z*10-6 (.1) donde: p = Empuje básico de tierras (MPa) k h = Coeficiente de presión lateral de tierras γ s = Densidad del suelo (kg/m 3 ) z = Profundidad bajo la superficie del suelo (m) g = Aceleración de la gravedad (m/s ) A menos que se especifique lo contrario, puede suponerse que la resultante de los empujes laterales debidos al peso del relleno estará a una altura de 0.4 H sobre la base del muro, donde H es la altura total del muro, medida desde la superficie del terreno hasta la base de la cimentación. Usualmente, se suponía que la resultante quedaba ubicada a un tercio de la altura total; sin embargo, estudios experimentales sobre muros reales han demostrado que el valor de 0.4 H es una aproximación razonable a los resultados de tales estudios. El coeficiente de presión lateral deberá ser considerado de acuerdo a los desplazamientos admisibles especificados o a las restricciones al movimiento del muro asumidas en el proyecto. La magnitud de la rotación requerida para el desarrollo de las presiones activas y pasivas se presentan en la Tabla 1. TABLA 1. RELACIÓN ENTRE EL TIPO DE RELLENO Y LA ROTACIÓN EN EL MURO REQUERIDA PARA ALCANZAR EL ESTADO ACTIVO O PASIVO EN MUROS RÍGIDOS DE CONTENCIÓN RELLENO ROTACIÓN EN EL MURO /H E.ACTIVO E.PASIVO Granular denso Granular suelto Cohesivo rígido Cohesivo blando

4 3. EMPUJE DE TIERRAS EN REPOSO El empuje de tierra en muros que se considera que no van a deflectarse o mover, se calcula tomando el coeficiente de presión lateral de tierras en reposo, k o el cual variará de acuerdo al estado de consolidación del suelo. Para suelos normalmente consolidados, el coeficiente k o se calcula mediante: k o = 1 senφ (3.1) f donde : φ f = ángulo de fricción interna del suelo drenado Para suelos sobreconsolidados, puede asumirse que k o varia en función de la relación de sobreconsolidación (OCR) o de la historia de esfuerzos, y puede calcularse como: k o sen φf = ( 1 senφ )( OCR ) (3.) f Como materiales de relleno, se preferirán los materiales drenantes granulares en comparación a los limos, arcilla de baja rigidez y arcillas con alta plasticidad. La condición de reposo también puede considerarse en el diseño si es que los muros quedan cerca a estructuras sensibles a los desplazamientos o les sirven de soporte, como en el caso de los estribos. 4. EMPUJE ACTIVO DE TIERRA En el caso de muros que van a desplazarse o deflectarse lo suficiente como para alcanzar las condiciones mínimas de empuje activo, se considera el coeficiente de presión lateral activo de tierras, calculado de esta forma: k a = cos cos β cos( β + δ ) 1 + ( φ β ) sen cos ( φ + δ ) sen( φ i ) ( β + δ ) cos( β i ) (4.1) donde: δ = ángulo de fricción entre el relleno y el muro i = ángulo de inclinación del relleno respecto a un eje horizontal β = ángulo de inclinación del respaldo interno del muro respecto a un eje vertical φ = ángulo de fricción interna 70

5 Para un análisis en condiciones de largo plazo, los empujes de tierra serán calculados usando los esfuerzos efectivos; además se adicionarán los empujes hidrostáticos en los casos que sea necesario. Los valores de δ pueden ser tomados a partir de referencias bibliográficas; en la Tabla se presentan algunos valores para materiales de distinta clase. 5. EMPUJE PASIVO DE TIERRA En el cálculo del empuje pasivo de tierras se tendrá en cuenta, para el caso de suelos granulares, un coeficiente de presión lateral pasiva de tierras dado por: ( φ β ) k = cos + p sen cos β cos( β δ) 1 + cos ( φ δ) sen( φ + i) ( β δ) cos( β i) (5.1) Debe tenerse presente que el ángulo de fricción δ no deberá tomarse mayor que la mitad del ángulo de fricción interna, φ.. Para suelos cohesivos, los empujes pasivos pueden ser estimados mediante: p = k h γ s g z*10-6 +c k p (5.) donde: p = empuje pasivo (MPa) γ s = densidad del suelo (kg/m 3 ) z = profundidad bajo la superficie del suelo (m) c = cohesión del suelo (MPa) k p = coeficiente de presión lateral pasiva calculada con (5.1) g = aceleración de la gravedad (m/s ) 71

6 TABLA. ÁNGULO DE FRICCIÓN ENTRE LA SUPERFICIE DE CONTACTO DE MATERIALES DISTINTOS MATERIALES EN LA INTERFASE Concreto masivo y mampostería sobre los siguientes suelos de cimentación: Roca sana limpia Grava limpia, mezclas de grava-arena, arena gruesa Arena limpia fina a media, arena limosa media a gruesa, grava limosa o arcillosa Arena limpia fina, arena limosa o arcillosa fina a media Arcilla arenosa fina, limo no plástico Arcilla preconsolidada o residual muy rígido y duro Arcilla media rígida a rígida y arcilla limosa ÁNGULO DE FRICCIÓN δ (º) 35 9 a 31 4 a 9 19 a 4 17 a 19 a 6 17 a 19 Concreto prefabricado o premoldeado sobre: Grava limpia, mezclas de grava-arena, relleno rocoso bien graduado con gravilla Arena limpia, mezclas de arena limosa-grava, relleno de roca dura de un solo tamaño. Arena limosa, grava o arena mezclada con limos o arcilla Limo arenoso fino, limos no plásticos a 6 17 a Varios materiales estructurales Mampostería sobre mampostería, rocas ígneas y metamórficas: Roca débil sobre roca débil Roca dura sobre roca débil Roca dura sobre roca dura Acero sobre acero en empalmes de tablestacas

7 6. EMPUJES EN MUROS ANCLADOS Cuando los muros tienen restricciones al desplazamiento mediante anclajes a una sola altura, el empuje de tierras puede suponerse linealmente proporcional a la profundidad; en este caso, el cálculo puede ser realizado con los análisis convencionales. El empuje de tierras, en caso de muros anclados con anclajes en dos o más niveles, puede suponerse constante con la profundidad. Para muros anclados en taludes ya establecidos, el empuje de tierras P a está dado por: P a =0.65*10-6 K a γ s gh (6.1) donde: P a = Empuje de tierras (MPa) H = Altura total del muro (m) K a = Coeficiente de presión lateral activa = tan (45- φ f ) γ s = Densidad efectiva del suelo (kg/m 3 ) Para muros construidos antes de la colocación del relleno, la magnitud total de la distribución rectangular uniforme deberá ser igual a 1.30 veces aquella de la distribución triangular determinada de acuerdo a lo indicado en el punto 4. En todo caso, en el análisis de los empujes de tierras se tendrá en cuenta el método y la secuencia de construcción, la rigidez del sistema constituido por el muro y los anclajes, las deflexiones máximas permitidas en el muro, el espaciamiento de los anclajes y la posibilidad de fluencia en el anclaje. 7. EMPUJES DE TIERRA ESTABILIZADA En muros de retención con tierra estabilizada con medios mecánicos, la fuerza por unidad de ancho, tal como se muestra en las Figuras 7.1, 7. y 7.3, se considerará actuando a una altura de h/3 sobre la base del muro, con una magnitud dada por la expresión: P a = 05. * γ * gh k a (7.1) s donde : P a = Fuerza resultante por unidad de ancho (N/m) γ s = Densidad del relleno (kg/m 3 ) h = Altura nominal del diagrama de presiones horizontales de tierra (Fig. 7.1, 7. y 7.3), en m k a = Coeficiente de presión lateral activa, especificados especialmente. 73

8 Los coeficientes de presión lateral en el caso de tierra estabilizada mecánicamente pueden ser determinados como sigue: a) Para superficies horizontales o inclinadas del relleno, como se muestran en las figuras 7.1 y 7., el coeficiente puede ser determinados por: donde : i = ángulo de inclinación del relleno φ f = ángulo de fricción interna ( ) cos i cos i cos φf ka = cos i * (7.) cos i+ cos i cos φ f b) Para superficies con inclinación truncada (Figura 7.3), el coeficiente k a está dado por : cos Ι cos Ι cos φf k a = cos Ι * (7.3) cos Ι + cos Ι cos donde : Ι = ángulo nominal de inclinación efectiva para el cálculo, determinado de acuerdo a la Figura 7.3 φ f = ángulo de fricción interna ( ) c) Para el análisis de la seguridad contra la falla estructural, se determinará el coeficiente k a como: φ f k a = tan φ 45 f (7.4) d) El coeficiente de presión lateral en reposo, k o se determinará para el análisis de la seguridad contra la falla estructural, como: k o =1-sen φ f (7.5) 74

9 75

10 8. EMPUJE SÍSMICO DE TIERRA 8.1 Muros sin Desplazamiento Restringido Para elementos de contención de tierras, tales como los muros de gravedad o en voladizo, que pueden desplazarse lateralmente durante un sismo (como por ejemplo, en estructuras soportadas por apoyos que pueden desplazarse libremente), el método pseudo-estático de Mononobe-Okabe, es usado ampliamente para calcular los empujes de tierra inducidos por los sismos. En áreas altamente sísmicas, el diseño de los estribos aceptando un desplazamiento lateral pequeño bajo aceleraciones máximas es la práctica general para lograr un diseño realista. Se hace referencia en esta subsección a un método desarrollado para calcular la magnitud del desplazamiento relativo del muro durante el sismo. Sobre la base de este método simple, se hacen recomendaciones para la selección de un coeficiente sísmico pseudo-estático y el nivel de desplazamiento correspondiente para una aceleración máxima del terreno determinada ANÁLISIS CON EL MÉTODO DE MONONOBE-OKABE El método estático desarrollado por Mononobe y Okabe (196) es el usado con más frecuencia en el cálculo de las fuerzas sísmicas del suelo actuando sobre el estribo de un puente. El análisis es una extensión de la teoría de falla de Coulomb, tomando en cuenta las fuerzas de inercia horizontal y vertical en el suelo. Se consideran las siguientes hipótesis: 1. La cimentación se desplaza lo suficiente para que se desarrollen las condiciones de máxima resistencia o presión activa en el suelo.. El relleno es granular, con un ángulo de fricción φ. 3. El relleno es no saturado, de modo que no se consideran problemas de la ecuación. Las consideraciones de equilibrio de la cuña de suelo sobre el estribo, tal 4como se muestra en la Figura 8.1, conducen a un valor, E AE, de la fuerza activa ejercida sobre la masa de suelo mediante el estribo y viceversa. Cuando el estribo está en el punto de falla, E AE está dada por la expresión: E AE = ½ g γ H (1 - k V ) K AE x 10-3 (8.1) donde el coeficiente de empuje activo sísmico K AE es: K AE cos ( φ θ β ) = x 1 + cosθ cos β cos( δ + β + θ ) sen( φ + δ )sen( φ θ i) cos( δ + β + θ ) cos( i β ) (8.) 76

11 donde: E AE = fuerza activa del suelo (kn) g = aceleración de la gravedad (m/s ) γ = densidad del suelo (kg/m 3 ) H = altura de la cara de suelo (m) φ = ángulo de fricción del suelo θ = arc tan k h ( 1 k ) v δ = ángulo de fricción entre el suelo y el estribo k h = coeficiente de aceleración horizontal k v = coeficiente de aceleración vertical i = ángulo de inclinación del relleno β = pendiente de la cara de suelo La expresión equivalente para la fuerza pasiva, si el estribo se desplaza presionando sobre el relleno es: E PE = ½ g γ H (1 - k V )K PE *10-3 (8.3) donde: cos ( φ θ + β ) sen( φ δ )sen( φ θ + i) K PE = x 1 (8.4) cosθ cos β cos( δ β + θ ) cos( δ β + θ )cos( i β ) El valor de h a, la altura a la cual la resultante de la presión del suelo actúa sobre el estribo, puede tomarse como H/3 o 0.4H para el caso estático sin considerar los efectos sísmicos; sin embargo, a medida que los efectos sísmicos aumentan llega a ser mayor. Otra forma de calcular h a puede ser considerando la componente estática del empuje de tierras (θ = k v = 0 ) actuando a H/3 desde el nivel inferior del estribo, mientras que la componente dinámica adicional se consideraría actuando a una altura de 0.6H (Seed y Whitman, 1970). Para propósitos prácticos, es suficiente suponer h a = H/ con un empuje uniformemente distribuido. De la ecuación (8.), debe cumplirse que el contenido del radical debe ser positivo para que una solución real sea posible y, por ello, es necesario que: φ i + θ = i + arc tan k h 1 k v (8.5) 77

12 Esta condición también puede ser útil para especificar un límite al coeficiente sísmico horizontal; la condición límite es: k ( 1 k ) tan( φ i) (8.6) h v Para una aceleración vertical nula, un relleno con cara vertical y un ángulo de fricción de 35º, el valor límite de k h es Los efectos inerciales en el estribo no son tomados en cuenta en el análisis de Mononobe-Okabe. Se puede suponer que las fuerzas de inercia debidas a la masa del estribo pueden despreciarse en la consideración del comportamiento y análisis sísmicos. Esta hipótesis no es conservadora, y para aquellos estribos que tienen en su masa un elemento importante para su estabilidad, es una suposición poco razonable el no considerar la masa del estribo como un aspecto importante de su comportamiento. Los efectos inerciales en el muro fueron discutidos por Richards y Elms (1979), quienes demostraron que las fuerzas inerciales del muro no serían pequeñas y tendrían que ser consideradas en el diseño de muros de contención por gravedad. β δ φ a Fig 8.1 Diagrama de fuerzas del empuje activo del suelo 78

13 8.1. DISEÑO POR DESPLAZAMIENTO Cuando en el análisis con el método de Mononobe-Okabe se emplean las aceleraciones máximas del terreno, las dimensiones de las estructuras de contención de tierras pueden llegar a ser demasiado grandes. En tal caso es preferible diseñar aceptando un pequeño desplazamiento lateral admisible, para obtener una estructura más económica. Diversos ensayos han demostrado que un muro de contención por gravedad falla en forma incremental durante un sismo. Para un movimiento sísmico del terreno, el desplazamiento relativo total puede ser calculado usando el método del bloque deslizante propuesto por Newmark (1965), En el método se supone que el patrón de desplazamiento es similar a aquel de un bloque sobre una superficie horizontal rugosa. Análisis realizados con diversos registros sísmicos escalados a un mismo nivel de aceleración y velocidad, en el que fueron procesados y graficados los desplazamientos máximos, permitieron concluir que las envolventes de desplazamiento tenían aproximadamente la misma forma, para todos los registros (Franklin y Chang, 1977). Una aproximación a tales curvas, para desplazamientos relativamente bajos, está dada por la relación: 4 V N d = (8.7) Ag A donde :d es el desplazamiento relativo máximo de un muro sometido a un movimiento sísmico del terreno cuyo máximo coeficiente de aceleración es A y la máxima velocidad es V. Dado que esta expresión ha sido derivada de envolventes, la magnitud de d resulta sobreestimada para la mayoría de sismos. Un posible procedimiento de diseño consistiría en elegir un valor admisible de desplazamiento máximo en el muro, d, junto con parámetros sísmicos apropiados, y usar la ecuación (8.7) para obtener un valor del coeficiente de aceleración sísmica para el cual el muro sería diseñado. Las conexiones en el muro, si existiesen, serían detalladas para permitir este desplazamiento. Aplicando este procedimiento a varios diseños simplificados, Elms y Martin (1979) han demostrado que un valor de diseño apropiado es: k h = A/ (8.8) Se especifica que con este criterio se esperarían desplazamientos en el estribo de hasta (54A) mm. Para puentes esenciales y no esenciales dentro de la zona sísmica 1 y para puentes esenciales en las zonas 1 o, se requerirá una consideración más detallada del mecanismo de transferencia de las fuerzas de inercia de la superestructura a través de los apoyos del puente hacia los estribos, 79

14 particularmente para los puentes de la categoría D, donde es necesario mantener la accesibilidad del puente después de un sismo severo. 8. Muros con Desplazamiento Restringido Como se anotó previamente, en el análisis de Mononobe-Okabe se supone que el estribo se desplaza lateralmente sin restricción, lo suficiente como para activar la resistencia del suelo en el relleno. Para suelos granulares, la resistencia máxima se alcanza si las deflexiones al nivel superior del muro es 0.5% de la altura del estribo. Si este elemento está restringido contra el movimiento lateral mediante conectores o pilotes inclinados, los empujes laterales serán mayores que los calculados con el análisis de Mononobe-Okabe, lo cual ha sido comprobado analíticamente. Para el diseño se sugiere el uso de un factor de 1.5 y considerar las aceleraciones máximas del terreno, en los casos que hubiera dudas en que el estribo pueda alcanzar un desplazamiento suficiente para generar la condición de presiones activas del terreno. 80

15 9. EMPUJES DEBIDOS A SOBRECARGA SUPERFICIAL Y TRAFICO Cuando se presente una sobrecarga superficial, al empuje de tierra básico debe sumársele un empuje de tierras constante debido a la sobrecarga. El empuje constante está dado por: p = k s q s (9.1) donde : p =incremento en el empuje horizontal de tierras debido a la sobrecarga (MPa) k s = coeficiente de presión lateral debido a la sobrecarga; se tomará k a para condiciones de empuje activo y k o para condiciones de empuje en reposo. q s =sobrecarga uniforme aplicada en la superficie de la cuña de tierra activada (MPa) Si se espera que exista trafico vehicular sobre la superficie del relleno y cerca al muro, dentro de una distancia igual a la altura del muro, se aplicará una sobrecarga viva superficial. Si la sobrecarga corresponde a una autopista, la intensidad de la carga será consistente con la sobrecarga indicada en el Reglamento. En caso contrario, la magnitud de la sobrecarga será especificada y aprobada por la entidad oficial. El incremento en el empuje horizontal puede ser estimado mediante: p = k γ s g h eq (*10 6 ) (9.) donde: p = incremento en el empuje horizontal de tierras (MPa) γ s = densidad del suelo (kg/m 3 ) k = coeficiente de presión lateral h eq = altura equivalente de suelo para el camión de diseño (m), según los valores de la Tabla 3. La altura del muro será medida desde la superficie del relleno y el nivel inferior de la cimentación. 81

16 TABLA 3. ALTURA EQUIVALENTE DE SUELO PARA CARGAS DE TRAFICO VEHICULAR. ALTURA DEL MURO (m) h eq (m) EMPUJES HIDROSTATICOS El empuje debido a la presión del agua debe corresponder el máximo nivel de agua que pueda ocurrir durante la vida útil del elemento de construcción, para fines de análisis, si es que no se ha previsto medidas de drenaje adecuadas. En la estimación del empuje deberá emplearse la densidad sumergida del suelo (densidad total del suelo saturado) para el calculo de la presión lateral, a partir del nivel freático. En caso de existir niveles de agua diferentes en las caras opuestas del muro, serán considerados los efectos del flujo de agua y la posibilidad de sifonamiento el análisis de los empujes hidrostáticos. Las presiones originadas por la filtración pueden ser estimadas mediante redes de flujo u otros procedimientos analíticos; los empujes totales laterales serán determinados mediante la suma de los esfuerzos efectivos horizontales y las presiones de poro resultantes del análisis. 8

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA 0 TABLA DE CONTENIDO PRÓLOGO 3 CAPITULO 3 (PARCIAL) OBRAS DE RETENCIÓN (DETERMINACION DE CARGAS DE SUELOS) 3.3 Cálculo de los empujes laterales del suelo 3.4 Análisis por Sismo 3.7.2 Consideraciones de

Más detalles

CAPÍTULO 12 ESFUERZO CORTANTE EN SUELOS

CAPÍTULO 12 ESFUERZO CORTANTE EN SUELOS Corte directo Capítulo 2 CAPÍTULO 2 ESFUERZO CORTANTE EN SUELOS 2. RESISTENCIA AL CORTE DE UN SUELO Esta resistencia del suelo determina factores como la estabilidad de un talud, la capacidad de carga

Más detalles

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO LOS MUROS DE CONTENCIÓN SON ELEMENTOS QUE SE USAN PARA CONTENER TIERRA, AGUA, GRANOS Y DIFERENTES MINERALES, CUANDO HAY DESNIVELES QUE CUBRIR.

Más detalles

CAPACIDAD DE SOPORTE EN FUNDACIONES SUPERFICIALES (Prof. Ricardo Moffat)

CAPACIDAD DE SOPORTE EN FUNDACIONES SUPERFICIALES (Prof. Ricardo Moffat) CAPACIDAD DE SOPORTE EN FUNDACIONES SUPERFICIALES (Prof. Ricardo Moffat) 1 TIPOS DE FUNDACIONES SUPERFICIALES Las fundaciones superficiales se utilizan cuando el suelo competente se encuentra a profundidades

Más detalles

1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.1 1.2 1.3 1.4 1.5 1.6 1.7 CAPíTULO 1 DEPÓSITOS DE SUELO Y ANÁLISIS GRANUlOMÉTRICO 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Introducción 1 Depósitos de suelo natural 1 Tamaño de las partículas de suelos 2 Minerales arcillosos 3 Densidad de

Más detalles

Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1

Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1 Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1 4.1 INTRODUCCIÓN En este capítulo se plantea el diseño y comprobación

Más detalles

paraingenieros Parte1

paraingenieros Parte1 ManualdeProgramasGEO5 paraingenieros Parte1 Capítulo 1. Configuración de análisis y Administrador de Configuración... 3 Capítulo 2. Diseño de Muro en voladizo... 11 Capítulo 3. Verificación de muro de

Más detalles

5. MUROS DE RETENCION. 5.1 Introducción

5. MUROS DE RETENCION. 5.1 Introducción 5. MUROS DE RETENCION 5.1 Introducción Los suelos, así como otros materiales tienen un ángulo de reposo propio; para lograr una pendiente mayor que la proporcionada por dicho ángulo se requiere de algún

Más detalles

MUROS DE CONTENCION. Por : Dr. Alberto Ordoñez C. *

MUROS DE CONTENCION. Por : Dr. Alberto Ordoñez C. * MUROS DE CONTENCION Por : Dr. Alberto Ordoñez C. * Como lo indica el nombre, los muros de contención son elementos estructurales diseñados para contener algo; ese algo es un material que, sin la existencia

Más detalles

Refuerzo longitudinal. Refuerzo transversal. Lateral

Refuerzo longitudinal. Refuerzo transversal. Lateral Sección Refuerzo longitudinal Refuerzo transversal Lateral Refuerzo transversal Refuerzo longitudinal Lateral Suple Refuerzo longitudinal Recubrimientos ACI 318 08 7.7.1 Protección por grados de exposición

Más detalles

CARACTERÍSTICAS DEL MURO

CARACTERÍSTICAS DEL MURO Estructura MURO DE CONTENCION TRAMO 01 MURO DE CONCRETO CIPLOPEO POR GRAVEDAD Archivo F:\DISEÑOS 2014\SALABELLA\MUROS DE RAMPA\MURO RAMPA TRAMO 01-1.50.prk CARACTERÍSTICAS DEL MURO Geometría Bloque # Ancho

Más detalles

ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO

ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO Segunda impresión adaptada a la Norma Venezolana 175-006 RAFAEL ANGEL TORRES BELANDRIA UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA MERIDA

Más detalles

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES

INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES INFORME TECNICO DEL SUS APLICACIONES Y CAPACIDADES Este es un producto diseñado e impulsado en Venezuela desde hace mas de 10 años por un grupo de Ingenieros Mecánicos y Arquitectos, que junto con un equipo

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Medición de la aceleración de la gravedad mediante plano inclinado

Medición de la aceleración de la gravedad mediante plano inclinado Medición de la aceleración de la gravedad mediante plano inclinado Lopez, Johanna Giselle (gyf_lola@hotmail.com) Martinez Roldan, Antu (antucolomenos@hotmail.com) Viglezzi, Ramiro (ramiro.viglezzi@gmail.com)

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

TEMA LA EDIFICACIÓN Y EL SUELO. CONSTRUCCIÓN 1. Prof. Mercedes Ponce

TEMA LA EDIFICACIÓN Y EL SUELO. CONSTRUCCIÓN 1. Prof. Mercedes Ponce TEMA LA EDIFICACIÓN Y EL SUELO. 1 Planteamiento Docente TEMA 13 El edificio y El muro TEMA 1: PLANTEAMIENTO GENERAL DEL PROBLEMA CONSTRUCTIVO TEMA 2: LA ARQUITECTURA Y EL SOL TEMA 3: LA ARQUITECTURA Y

Más detalles

Tema 12: El contacto con el terreno.

Tema 12: El contacto con el terreno. Tema 12: El contacto con el terreno. Parte I: Cimentación Transferencia de cargas de la estructura al terreno Parte II: Contención de tierras y mejora de suelos Cerramientos en contacto con el terreno,

Más detalles

Caracterización Geotécnica del Suelo de Fundación de Santiago

Caracterización Geotécnica del Suelo de Fundación de Santiago Visita a terreno Caracterización Geotécnica del Suelo de Fundación de Santiago La cuenca está conformada por sedimentos cuaternarios de aproximadamente 300 a 400 metros de espesor provenientes de la erosión

Más detalles

CIMENTACIONES SOBRE ARENA Y LIMO NO PLASTICO

CIMENTACIONES SOBRE ARENA Y LIMO NO PLASTICO COLEGIO OFICIAL DE ARQUITECTOS DE CADIZ TALLER 2. ESTRUCTURAS Estudios Geotécnicos y Cimentaciones DB SE-C UNIDAD 4 SELECCIÓN N DEL TIPO DE CIMENTACION Y BASES PARA EL PROYECTO CIMENTACIONES SOBRE ARENA

Más detalles

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas

Más detalles

Estudio de Suelos. La investigación geotécnica en los proyectos de edificaciones.

Estudio de Suelos. La investigación geotécnica en los proyectos de edificaciones. Recuperado de: http://www.e-zigurat.com/noticias/importancia-estudio-de-suelos/ Nov. 2015 Estudio de Suelos. La investigación geotécnica en los proyectos de edificaciones. Durante mucho tiempo el trabajo

Más detalles

Empujes de suelos sobre muros en subterráneos

Empujes de suelos sobre muros en subterráneos Geotecnia: Empujes de suelos sobre muros en subterráneos Preámbulo Este Anteproyecto de Norma Técnica MINVU se estudió a través del Comité Técnico constituido en el Instituto de la Construcción a solicitud

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

CIMENTACIONES DEFINICIÓN:

CIMENTACIONES DEFINICIÓN: . DEFINICIÓN: La parte inferior de una estructura se denomina generalmente cimentación, su función es transferir la carga de la estructura al suelo en que esta descansa. Transferir la carga a través del

Más detalles

Sistema Transmilenio: Estaciones - Calle 146, Mazurén y Toberín, ubicadas en la Autopista Norte, en Bogotá D.C. - Grupo 2

Sistema Transmilenio: Estaciones - Calle 146, Mazurén y Toberín, ubicadas en la Autopista Norte, en Bogotá D.C. - Grupo 2 11.1 GENERAL 11 ESTUDIO DE LA CIMENTACiÓN De acuerdo con las condiciones del terreno descritas, el perfil del subsuelo se puede considerar homogéneo en los emplazamientos de las tres estaciones. Superficialmente

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Ensayos para conocer resistencia de un suelo

Ensayos para conocer resistencia de un suelo Ensayos para conocer resistencia de un suelo La determinación de los parámetros, cohesión y ángulo de rozamiento que nos definen la resistencia del suelo se determinan en el estudio Geotécnico, bien a

Más detalles

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS La caracterización de las propiedades físicas, mecánicas e hidráulicas del suelo es de suma importancia en la determinación de la capacidad de soporte

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

ANCLAJES Y EMPALMES POR ADHERENCIA

ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.- ANCLAJES ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.1.- Anclaje de barras y alambres rectos traccionados 9.A.1.1.- Expresión general El CIRSOC 201-2005, artículo 12.2.3, indica la siguiente expresión

Más detalles

II.7. Estructuras de soporte

II.7. Estructuras de soporte II.7. Estructuras de soporte Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 II.7. Estructuras de soporte

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

EVALUACIÓN DE CÓDIGO SÍSMICO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez

EVALUACIÓN DE CÓDIGO SÍSMICO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez EVALUACIÓN DE CÓDIGO SÍSMICO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez NOMBRE DEL DOCUMENTO: Código Sísmico de Costa Rica 2002 AÑO: 2002 COMENTARIOS GENERALES: Oficialmente

Más detalles

TEMA 5: PANTALLAS DE HORMIGÓN ARMADO PARA SÓTANOS: CONSTRUCCIÓN Y TIPOLOGÍA

TEMA 5: PANTALLAS DE HORMIGÓN ARMADO PARA SÓTANOS: CONSTRUCCIÓN Y TIPOLOGÍA TEMA 5: PANTALLAS DE HORMIGÓN ARMADO PARA SÓTANOS: CONSTRUCCIÓN Y TIPOLOGÍA ÍNDICE EXCAVACIONES TIPOS DE PANTALLA PANTALLAS CONTINUAS DE HORMIGÓN PANTALLAS HORMIGONADAS IN SITU LODO BENTONÍTICO TIPOS DE

Más detalles

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE 2.1 Comportamiento, modos de falla y resistencia de elementos sujetos a compresión axial En este capítulo se presentan los procedimientos necesarios para

Más detalles

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO 9.1 INTRODUCCIÓN: La cimentación es la parte de la estructura ue permite la transmisión de las cargas ue actúan, hacia el suelo o

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

TABLAS DE CARGA TM500E-2

TABLAS DE CARGA TM500E-2 TABLAS DE CARGA TM500E-2 85% DE ESTABILIDAD 229266 SERIAL NUMBER 1 2 ÍNDICE NOTAS GENERALES... 4 REDUCCIONES DE PESO / JALONES DE LÍNEA E INFORMACIÓN DE LOS CABLES / DESEMPEÑO DEL IZADOR... 5 DIAGRAMA

Más detalles

Pilotes prefabricados

Pilotes prefabricados Manual Técnico PC - Capítulo 5 S. A. prefabricados cr e to Los pilotes de concreto prefabricado son elementos prismáticos de concreto reforzado o preesforzado provistos de una punta en concreto. Son hincados

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Universidad del Azuay Facultad de Ciencia y Tecnología

Universidad del Azuay Facultad de Ciencia y Tecnología Universidad del Azuay Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y Gerencia de Construcciones Desarrollo de un programa o software libre para el diseño de muros ménsula Trabajo de Grado

Más detalles

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN Ing. Marcelo Romo Proaño, M.Sc. Centro de Investigaciones Científicas Escuela Politécnica del Ejército mromo@espe.edu.ec RESUMEN Se presentan curvas

Más detalles

ESTUDIO DE PREDISEÑO DE FUNDACIONES CONTENIDO

ESTUDIO DE PREDISEÑO DE FUNDACIONES CONTENIDO INSTITUTO DE DESARROLLO URBANO 1-1 ESTUDIO PARA EL PREDISEÑO DE FUNDACIONES CONTENIDO 1. INTRODUCCIÓN... 1-1 1.1. OBJETIVO... 1-1 1.2. LOCALIZACIÓN... 1-1 1.3. DESCRIPCIÓN DEL PROYECTO... 1-1 2. INVESTIGACIÓN

Más detalles

EQUIPOS DE AUSCULTACIÓN E INSTRUMENTACIÓN

EQUIPOS DE AUSCULTACIÓN E INSTRUMENTACIÓN EQUIPOS DE AUSCULTACIÓN E INSTRUMENTACIÓN 1 EQUIPOS DE AUSCULTACIÓN E INSTRUMENTACIÓN 1. EQUIPOS DE AUSCULTACIÓN E INSTRUMENTACIÓN... 2 2. CONTROL DE MOVIMIENTOS... 1 2.1. INCLINOMETRÍA... 2 2.2. DESPLAZAMIENTOS

Más detalles

INTRODUCCIÓN RESEÑA HISTÓRICA

INTRODUCCIÓN RESEÑA HISTÓRICA INTRODUCCIÓN RESEÑA HISTÓRICA La cimentación profunda ha sido aplicada desde tiempos prehistóricos. Hace 12,000 años los habitantes de Suiza introducían troncos de madera en los suelos blandos de lagos

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9 Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para

Más detalles

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO Página 1 de 7 DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO 8.1 INTRODUCCION La cimentación es la parte de la estructura que permite la transmisión de las cargas que actúan, hacia el suelo o hacia la roca

Más detalles

Determinación de la Resistencia a la Tracción de Geotextiles No Tejidos Bajo Carga Concentrada por el Método del Agarre ( Grab Test )

Determinación de la Resistencia a la Tracción de Geotextiles No Tejidos Bajo Carga Concentrada por el Método del Agarre ( Grab Test ) Determinación de la Resistencia a la Tracción de Geotextiles No Tejidos Bajo Carga Concentrada por el Método del Agarre ( Grab Test ) Apas Ana Lighuen (1) Ing. Fensel Enrique (2) LEMaC Centro de Investigación

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

PRÁCTICAS DE GEOTECNIA Y CIMIENTOS (2007-2008)

PRÁCTICAS DE GEOTECNIA Y CIMIENTOS (2007-2008) PRÁCTICAS DE GEOTECNIA Y CIMIENTOS (2007-2008) Como es costumbre se van a resolver por el profesor los problemas de exámenes del año anterior en las clases de prácticas. En las horas correspondientes a

Más detalles

SEISMIC DESIGN OF RETAINING WALLS IN GRAVITY AND CANTILEVER DISEÑO SISMICO DE MUROS DE CONTENCIÓN EN GRAVEDAD Y VOLADIZO

SEISMIC DESIGN OF RETAINING WALLS IN GRAVITY AND CANTILEVER DISEÑO SISMICO DE MUROS DE CONTENCIÓN EN GRAVEDAD Y VOLADIZO ISSN: 169-757 - Volumen Número 0-01 Recibido: 01 de junio de 01 Aceptado: 15 de junio de 01 SEISMIC DESIGN OF RETAINING WALLS IN GRAVITY AND CANTILEVER DISEÑO SISMICO DE MUROS DE CONTENCIÓN EN GRAVEDAD

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales.

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales. ESCUELA INDUSTRIAL SUPERIOR Anexa a la Facultad de Ingeniería Química UNIVERSIDAD NACIONAL DEL LITORAL Tema: RESISTENCIA DE MATERIALES Ensayo: Tracción estática de metales Normas consultadas: IRAM IAS

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

ANEXO 23 ESTIMACIÓN DE FILTRACIONES AL ACUÍFERO

ANEXO 23 ESTIMACIÓN DE FILTRACIONES AL ACUÍFERO Proyecto Caserones Adenda N 3 al Estudio de Impacto Ambiental ANEXO 23 ESTIMACIÓN DE FILTRACIONES AL ACUÍFERO Padre Mariano 103, Of. 307 - Providencia, Santiago, Chile Fono: (56-2) 236 0886 - Fax: (56-2)

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Curso Diseño en Hormigón Armado según ACI 318-14

Curso Diseño en Hormigón Armado según ACI 318-14 SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Diseño de Diafragmas y Losas Relator: Matías Hube G. Diseño de Diafragmas y Losas Losas en una dirección (Cáp. 7) Losas

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

TORNILLOS DE POTENCIA

TORNILLOS DE POTENCIA UNIVERSIDAD DE LOS ANDES ESCUELA DE MECANICA CATEDRA DE DISEÑO TORNILLOS DE POTENCIA MÉRIDA 2010 INTRODUCCIÓN A través de estos elementos de maquinas, denominados también tornillos de fuerza, es posible

Más detalles

ACI 318-14: Reorganizado para Diseñar. Generalidades, Notación, y Normas. Adoptado legalmente Versión oficial Inglés, libras-pulgadas

ACI 318-14: Reorganizado para Diseñar. Generalidades, Notación, y Normas. Adoptado legalmente Versión oficial Inglés, libras-pulgadas ACI 318S-14 - Generalidades, notación y normas Requisitos de Reglamento para concreto estructural ACI 318-14: Reorganizado para Diseñar Generalidades, Notación, y Normas WWW.CONCRETE.ORG/ACI318 1 Capítulo

Más detalles

Acueducto Entrerriano La Paz - Estacas

Acueducto Entrerriano La Paz - Estacas Acueducto Entrerriano La Paz - Estacas Junio 2010 1 CONTENIDO 1 - INTRODUCCIÓN... 3 2 - OBRA DE TOMA... 5 2.1 - UBICACIÓN... 5 2.2 - DISEÑO - GEOMETRÍA... 7 2.3 - CONCLUSIÓN PARCIAL.... 11 3 - CANAL PRINCIPAL...

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

CAPÍTULO II INTERACCIÓN SUELO CIMENTACIÓN. El terreno, al recibir cargas que son transmitidas por la cimentación, tiende a deformarse

CAPÍTULO II INTERACCIÓN SUELO CIMENTACIÓN. El terreno, al recibir cargas que son transmitidas por la cimentación, tiende a deformarse CAPÍTULO II INTERACCIÓN SUELO CIMENTACIÓN 2.1 CARACTERÍSTICAS DEL DISEÑO DE CIMENTACIONES El terreno, al recibir cargas que son transmitidas por la cimentación, tiende a deformarse en una o en varias de

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica I. Pág. 1 de 11 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Cimentación. Zapata, Cimientos Corridos y Pilotes

Cimentación. Zapata, Cimientos Corridos y Pilotes Cimentación Zapata, Cimientos Corridos y Pilotes Que es..? Cimentación Las cimentaciones o también llamadas fundaciones, es la parte de la construcción que se apoya sobre el terreno, se constituye así

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS.

4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS. 4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS. 4.1. Ensayos edométricos. Colapsabilidad, compresibilidad y consolidación

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

EVALUACIÓN DEL INCREMENTO DE LAS CANTIDADES DE OBRA EN LOS MUROS DE CONTENCIÓN CON CONTRAFUERTES DE CONCRETO REFORZADO POR EL EFECTO SISMICO

EVALUACIÓN DEL INCREMENTO DE LAS CANTIDADES DE OBRA EN LOS MUROS DE CONTENCIÓN CON CONTRAFUERTES DE CONCRETO REFORZADO POR EL EFECTO SISMICO EVALUACIÓN DEL INCREMENTO DE LAS CANTIDADES DE OBRA EN LOS MUROS DE CONTENCIÓN CON CONTRAFUERTES DE CONCRETO REFORZADO POR EL EFECTO SISMICO CARLOS JESUS MUENTES BERMUDEZ CARLOS GUILLERMO BARRERA SANCHEZ

Más detalles

San Bartolomé. Albañilería Armada. Albañilería Confinada

San Bartolomé. Albañilería Armada. Albañilería Confinada San Bartolomé Albañilería Armada Albañilería Confinada Lecciones dejadas por los sismos Resultados experimentales Estudios teóricos Japón La norma de 1982 empleaba un método de diseño elástico admitiéndose

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

OS.070 REDES DE AGUAS RESIDUALES

OS.070 REDES DE AGUAS RESIDUALES OS.070 REDES DE AGUAS RESIDUALES ÍNDICE PÁG. 1. OBJETIVO 2 2. ALCANCES 2 3. DEFINICIONES 2 4. DISPOSICIONES ESPECÍFICAS PARA DISEÑO 4.1 Levantamiento Topográfico 4.2 Suelos 4.3 Población 4.4 Caudal de

Más detalles

PROFESORES SERGIO IBÁÑEZ GARCÍA JOSÉ ANTONIO BARCO HERRERA ANA BELÉN ESPINOSA GONZÁLEZ

PROFESORES SERGIO IBÁÑEZ GARCÍA JOSÉ ANTONIO BARCO HERRERA ANA BELÉN ESPINOSA GONZÁLEZ PROGRAMA DE LA ASIGNATURA: GEOTECNIA Y CIMIENTOS CURSO: 3º TIPO: OPTATIVA Nº CRÉDITOS: 4,5 (3T+1,5P) PLAN DE ESTUDIOS: ARQUITECTURA TÉCNICA (B.O.E. 18 DE FEBRERO DE 1999) DEPARTAMENTO: CONSTRUCCIONES ARQUITECTÓNICAS

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

7. CONCLUSIONES Y RECOMENDACIONES GENERALES

7. CONCLUSIONES Y RECOMENDACIONES GENERALES 7. CONCLUSIONES Y RECOMENDACIONES GENERALES 7.1. CONCLUSIONES En primer lugar se ha realizado una descripción geográfica, geológica y sísmica de la zona de estudio que comprende los núcleos urbanos de

Más detalles

Propiedades físico mecánicas Largo: Ancho: Altura Efectiva: Area: Volumen: Peso:

Propiedades físico mecánicas Largo: Ancho: Altura Efectiva: Area: Volumen: Peso: Aplicaciones: - Muros de retención en laderas. - Aproches en puentes. - Estabilización de taludes. - Control de erosión. - Revestimiento de canales. - Barreras de sonido. - Jardines. Se presentan las dimensiones

Más detalles

Para base y subbase se harán los ensayos definidos en la especificación correspondiente.

Para base y subbase se harán los ensayos definidos en la especificación correspondiente. NORMATIVIDAD ASOCIADA: NEGC 200 y 1300. GENERALIDADES: Se refiere esta especificación a llenos con materiales de préstamo o material selecto de la excavación, compactados por métodos manuales o mecánicos,

Más detalles

COMBINACIÓN Y MAYORACIÓN DE ACCIONES

COMBINACIÓN Y MAYORACIÓN DE ACCIONES LBrB B(D B(D B(L BH B(LBrB B(LBrB ) COMBINACIÓN Y MAYORACIÓN DE ACCIONES 1.1.- Requerimientos básicos de resistencia El CIRSOC 01-005, artículo 9.1.1, requiere que las estructuras y los elementos estructurales

Más detalles

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA 0 TABLA DE CONTENIDO PRÓLOGO 1 2 3 4 5 CAPÍTULO 1 ALCANCE, CONTENIDO Y SUPERVISIÓN TÉCNICA 1.1 Alcance 1.2 Contenido de la norma 1.3 Supervisión técnica CAPÍTULO 2 MATERIALES EMPLEADOS Y SUS PROPIEDADES

Más detalles

4. CAPA ROMPEDORA. Para evitar lo posible la ascención capilar del terreno natural a las terracerías por

4. CAPA ROMPEDORA. Para evitar lo posible la ascención capilar del terreno natural a las terracerías por 4. CAPA ROMPEDORA Para evitar lo posible la ascención capilar del terreno natural a las terracerías por construir, sobre la capa de desplante se construye una capa rompedora de capilaridad de 30 cm. de

Más detalles

Ficha técnica de Agregados. Planta Guápiles Planta Guacalillo

Ficha técnica de Agregados. Planta Guápiles Planta Guacalillo Ficha técnica de Agregados Planta Guápiles Planta Guacalillo Índice Ficha técnica agregados palnta Guápiles... 4 Ficha técnica agregados palnta Guápiles... 13 Ficha técnica de Agregados Planta Guápiles

Más detalles

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 112 111 CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 8.1 ANALISIS 8.1.1 CRITERIOS Las placas son los elementos que gobiernan el comportamiento sísmico de la edificación. Como lo hemos mencionado anteriormente,

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

Proyecto básico: Juntas de dilatación en edificios de acero

Proyecto básico: Juntas de dilatación en edificios de acero Proyecto básico: Juntas de dilatación en edificios de acero Este documento proporciona una guía para el diseño básico de las juntas de dilatación en edificios de acero. Índice. Contexto. Efectos de la

Más detalles

ESTUDIO GEOTECNICO PROYECTO : DIQUE DE COLAS SAN ANTONIO UBICACIÓN : PROVINCIA TOMAS FRIAS DEPARTAMENTO POTOSI

ESTUDIO GEOTECNICO PROYECTO : DIQUE DE COLAS SAN ANTONIO UBICACIÓN : PROVINCIA TOMAS FRIAS DEPARTAMENTO POTOSI ESTUDIO GEOTECNICO PROYECTO : DIQUE DE COLAS SAN ANTONIO SOLICITANTE : ASOCIACION DE INGENIEROS POTOSI EMPRESA DE SERVICIOS AMBIENTALES UBICACIÓN : PROVINCIA TOMAS FRIAS DEPARTAMENTO POTOSI RESPONSABLE

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

0 a 2 Muy blanda 2 a 4 Blanda 4 a 8 Medianamente compacta 8 a 15 Compacta 15 a 30 Muy compacta

0 a 2 Muy blanda 2 a 4 Blanda 4 a 8 Medianamente compacta 8 a 15 Compacta 15 a 30 Muy compacta Ingeniería de suelos y fundaciones LABORATORIO CONSULTAS - PROYECTOS INFORME Nº: 07.289/1 1. - OBJETO: Estudio de suelos para fundaciones.- 2. - OBRA: Edificio para hotel de 3 subsuelos, planta baja y

Más detalles

7. CARACTERÍSTICAS GEOTÉCNICAS DE LOS DIQUES DEL ATRATO.

7. CARACTERÍSTICAS GEOTÉCNICAS DE LOS DIQUES DEL ATRATO. 0SS0 para Proyecto PNUD COL/ 95/009/010 7. CARACTERÍSTICAS GEOTÉCNICAS DE LOS DIQUES DEL ATRATO. Por su origen como depósitos recientes y actuales los diques y orillares del Atrato presentan, en toda su

Más detalles

SUELOS Y FUNDACIONES

SUELOS Y FUNDACIONES CAPÍTULO 1 SUELOS Y FUNDACIONES SECCIÓN 101 GENERALIDADES 101.1 Alcance. Las disposiciones de este capítulo deben aplicarse a sistemas de edificaciones y fundaciones en aquellas áreas no sujetas a socavación

Más detalles
Sitemap