Capítulo 5 Oscilaciones


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 5 Oscilaciones"

Transcripción

1 Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75

2

3 5.A PROBLEMAS DE SELECCIÓN Sección 5.A Problemas de selección 159. Una partícula realiza un movimiento armónico simple unidimensional tal que su posición en función del tiempo es x(t)=acos(ωt + δ).six(0)=a/2yẋ(0) > 0 entonces su fase inicial es A) distinta a las otras 4 opciones. B) δ =+π/6 C) δ =+π/3 D) δ = π/6 E) δ = π/ Si se duplica la amplitud de un movimiento armónico simple unidimensional, la energía cinética máxima del sistema A) se cuadruplica. B) se duplica. C) disminuye a la mitad. D) puede no variar. E) no cumple con ninguna de las otras 4 opciones. C. Di Bartolo 77

4 5OSCILACIONES 161. Considere dos sistemas masa-resorte apoyados sobre una superficie horizontal, lisa y con resortes idénticos. Una de las masas es m 1 y la otra es m 2 con m 2 > m 1. Las siguientes afirmaciones comparan los movimientos de las dos masas, diga cuál es falsa. A) Cuando tienen la misma velocidad, la menor energía cinética la tiene m 1. B) Cuando los resortes tienen la misma compresión, ambas masas tienen la misma energía potencial. C) Si se comprimen ambos resortes una distancia Δx y se sueltan, ambas masas alcanzarán la misma velocidad máxima. D) El período de oscilación de m 2 es mayor que el período de oscilación de la masa m 1. E) Si las amplitudes son iguales, las energías cinéticas máximas también son iguales La posición de una partícula que realiza un movimiento armónico simple unidimensional, viene dada por la expresión x = Asen(wt). En el instante t = 3/8 del período se cumple que A) x =+A 2/2 yẋ > 0. B) x = A 2/2 yẋ < 0. C) x = A 2/2 yẋ > 0. D) x =+A 2/2 yẋ < 0. E) ninguna de las otras 4 opciones es correcta En el el instante t = 0 un bloque de masa 2g se suelta del reposo respecto a Tierra y desde la posición mostrada en la figura. La superficie donde se apoya es lisa y horizontal. El resorte de constante elástica 8N/m tiene su punto de equilibrio en O y está atado a la pared y al bloque. La distancia del bloque a la pared, en función del tiempo y en unidades del Sistema Internacional, es A) d(t)=8cos(2t) = 8N/m M = 2g B) d(t)=5 + 3cos(2t) C) d(t)=5 + 3cos(t/2) O D) d(t)=3cos(2t) E) d(t)=8cos(t/2) 5m 3m 78 C. Di Bartolo

5 5.A PROBLEMAS DE SELECCIÓN 164. Con un resorte ideal, horizontal, apoyado en el piso y con un extremo fijo a una pared, se realizan 2 experiencias de movimiento armónico simple unidimensional. En ambas se ata un bloque en el extremo libre (en el punto de equilibrio) y con la misma velocidad inicial. En la primera experiencia el bloque tiene masa M y en la segunda masa 2M. Entonces A) en ambos casos el período es el mismo, pero el de mayor masa tiene mayor amplitud. B) el movimiento de la masa más grande tiene amplitud y período mayores. C) ambos movimientos tendrán el mismo período y amplitud. D) el movimiento con mayor período tiene menor amplitud. E) en ambos casos la amplitud es la misma, pero el de masa mayor tiene mayor período Un bloque atado a un resorte oscila sobre una mesa horizontal lisa. El movimiento tiene amplitud A, y el punto de equilibrio del resorte está en o. Para el instante mostrado en la figura se cumple que el cociente entre la rapidez del bloque y su rapidez máxima, v/v Máxima,es A) 4/5. B) 2 6/5. C) 3/5. o D) 1/5 E) 9/25. A A Considere el movimiento armónico simple de un sistema masa resorte. Se cumple que A) el período del movimiento aumenta si se aumenta la amplitud del movimiento. B) el período del movimiento aumenta si se disminuye la amplitud del movimiento. C) el período del movimiento aumenta si se disminuye la rapidez inicial. D) el período del movimiento aumenta si se aumenta la rapidez inicial. E) ninguna de las otras 4 opciones es correcta. C. Di Bartolo 79

6 5OSCILACIONES 167. Un bloque se apoya sobre un pistón, ver figura. Un mecanismo no mostrado hace que el pistón oscile verticalmente siendo su posición en función del tiempo y(t)=asen(ωt + δ). Para qué valores de la amplitud A el bloque no se despega del pistón? A) A < 2g/ω 2. B) A < g/ω. C) A > g/ω 2. D) A < g/ω 2. E) Ninguno de los anteriores es correcto. y(t) o j 168. Los bloques de los dos osciladores de la figura tienen la misma masa y se encuentran sobre una superficie lisa y horizontal. Se observa que justo cuando M 1 completa 3 oscilaciones M 2 completa 2. Se cumple que A) 2 / 1 = 4/9. 1 M 1 = M M 2 = M 2 B) 2 / 1 = 2/3. C) 2 / 1 = 3/2. D) 2 / 1 = 9/4. E) ninguna de las otras opciones es correcta El bloque de la figura descansa en una superficie horizontal y lisa; comprime un resorte de constante elástica = 20N/m y se mantiene en reposo por la aplicación de una fuerza F = 60N hacia la derecha. Si se remueve la fuerza F la energía cinética máxima que alcanza el bloque A) es de 30 Joules. B) es de 180 Joules. C) es de 60 Joules. D) depende de la masa del bloque. E) es de 90 Joules. F 80 C. Di Bartolo

7 5.A PROBLEMAS DE SELECCIÓN 170. Un sistema masa-resorte oscila sobre una superficie lisa y horizontal. El resorte tiene constante elástica = 800 N/m, el bloque masa M = 2 g y la amplitud del movimiento es A = 0.5 m. Cuántas oscilaciones completas logra realizar el bloque en 2 segundos? A) 40. B) Ninguna. C) 6. D) 3. E) Más de El bloque de la figura descansa sobre una superficie lisa y horizontal, comprime un resorte (al cual está atado) y se mantiene en reposo presionándolo con un dedo. El dedo se retira al instante t = 0 y el bloque comienza a oscilar. Cuál de las gráficas representa mejor la energía cinética del bloque en función del tiempo? i A) B) C) D) E) 0 0 t 0 0 t 0 0 t 0 0 t 0 0 t C. Di Bartolo 81

8 5OSCILACIONES Sección 5.B Problemas de desarrollo 172. Una persona comprime un resorte de constante elástica por medio de dos bloques de masas M 1 y M 2. Los bloques están en reposo sobre una superficie horizontal lisa y fija a Tierra (ver figura). El punto O es el punto de equilibrio del resorte, y lo tomaremos como origen de coordenadas. L es la compresión del resorte cuando los bloques están en reposo. 2 û x El resorte tiene un extremo atado a una pared y el otro M 1 M O atado al bloque #1. El sistema se deja libre y los dos bloques se mueven juntos (como un solo bloque) para luego L separarse en el punto O. a. Determine la velocidad de los dos bloques en el instante en que se separan. b. Tome t = 0 en el instante de separación de los bloques. Para t 0 el movimiento de M 1 es armónico simple; halle para este movimiento su período, amplitud y fase inicial. Halle en función del tiempo las componentes x de la posición y velocidad de M 1 para t 0. Precaución: L no es la amplitud Lapistadelafigura es lisa, en su porción horizontal tiene un resorte de constante elástica con un extremo libre y un extremo fijo a una pared. Desde un punto A situado a una altura h parte del reposo un pequeño bloque de masa M. Cuando el bloque toca el resorte queda adherido al mismo y comienza a oscilar. Tome como instante t = 0 el momento de la colisión con el resorte y como origen de coordenadas el punto o (punto de equilibrio del resorte). a. Halle la posición x(t) del bloque para t 0. M A ˆx b. Encuentre los vectores posición y velocidad del bloque para el instante t = τ/3, donde τ es el período del movimiento oscilatorio. h o 174. Lafiguraabajo alaizquierda muestra unbloquesobreunasuperficie horizontal lisa sometido a la acción de dos resortes en paralelo. Los resortes están unidos a una pared lisa y al bloque, tienen longitudes naturales y constantes elásticas dadas por (l 1, 1 )y(l 2, 2 ). El origen de coordenadas 0 está en la base de la pared y llamaremos x a la posición del bloque. 82 C. Di Bartolo

9 5.B PROBLEMAS DE DESARROLLO 1 2 M i M 0 x 0 x i a. Halle la fuerza neta que actúa sobre el bloque de la izquierda. Determine el punto de equilibrio x = x e para dicha fuerza. Demuestre que la fuerza neta se puede escribir como F = (x x e )i donde es una constante que debe determinar. b. Considere el resorte en la figura de arriba a la derecha. Qué constante elástica y longitud natural l debe tener este resorte para aplicar al bloque la misma fuerza que los resortes de la izquierda? Nota: la constante elástica del nuevo resorte suele denominarse constante elástica equivalente del sistema de dos resortes en paralelo La figura muestra un resorte con un extremo atado a una pared y el otro a un bloque. El bloque tiene masa M = 4 g, se apoya en una superficie horizontal lisa y su movimiento oscilatorio tiene como puntos extremos a los puntos a y b. a. El bloque tarda un tiempo t ab =(1/5) s en recorrer la distancia d ab = 8 m entre los puntos a y b. Halle la amplitud A, el período τ y la frecuencia angular ω del movimiento. Encuentre también la constante elástica del resorte. b. Tome nula la energía potencial en el punto de equilibrio del resorte. Halle la energía del sistema y la rapidez máxima del bloque. c. En el instante t = 0 el bloque se encuentra en el punto p y moviéndose hacia la derecha. La distancia entre a y p es d ap = 3A/2. Tome origen en el punto de equilibrio del resorte y halle la posición x(t) y velocidad ẋ(t) del bloque. d. Determine el tiempo que tarda el bloque en ir desde el punto p al punto a por primera vez La figura muestra un bloque muy delgado de masa m que se encuentra sobre una superficie horizontal lisa y que está unido a dos resortes de constantes elásticas 1 y 2. Los resortes tienen longitudes naturales l 01 y l 02 y están unidos a su vez a dos paredes que distan entre sí una distancia h. a i h p M 1 m 2 0 i x El origen de coordenadas 0 está en la base de la pared izquierda y llamaremos x a la posición del bloque. a. Imagine que en el instante mostrado en la figura los dos resortes están estirados. Halle la cantidad en que está estirado cada resorte respecto a su longitud natural. Determine la fuerza neta F sobre la partícula. b. Encuentre el punto de equilibrio x = x e de la fuerza neta F. b C. Di Bartolo 83

10 5OSCILACIONES c. Haga el cambio de variables de x a z = x x e y escriba F en función de z. Escriba la aceleración de la partícula en función de z. A partir de la segunda ley de Newton para la partícula (escrita en términos de z y z) halle la frecuencia de oscilación del bloque El resorte de la figura está unido a la pared y a un bloque de masa M que se apoya sobre una superficie lisa y horizontal. Encima del bloque se encuentra apoyado un bloquecito de masa m. Hay roce entre los dos bloques. El sistema ejecuta un movimiento armónico simple de amplitud A y el bloquecito no desliza sobre el bloque. a. Halle los módulos de: la aceleración máxima del sistema y la fuerza de roce máxima que actúa sobre el bloquecito. b. Qué rango de valores está permitido para el coeficiente de roce estático μ? m M 178. El sistema masa-resorte de la figura se encuentra sobre una superficie horizontal y lisa. El resorte tiene una constante elástica = 500N/m y la masa del bloque es M = 5g. La posición del bloque respecto a la posición de equilibrio es x(t). Suponga que en el instante t = 0 el bloque está comprimiendo al resorte una longitud de 4 m y se mueve hacia la derecha con una rapidez de 30 m/s. a. Determine la frecuencia angular y la amplitud del movimiento. b. Calcule las magnitudes máximas de rapidez y aceleración del bloque en que punto se alcanza cada uno? o c. Tome x(t)=acos(ωt + δ) y determine la fase inicial δ. x(t) 179. Las figuras representan dos experiencias con el mismo resorte de constante elástica. El resorte cuelga verticalmente con un extremo atado al techo. El otro extremo del resorte está libre en la experiencia A, mientras que en la experiencia B está atado l 0 a un bloque de masa M y en reposo. L a. Conocidas las cantidades, M y l 0 determine la distancia L. M b. Se hace oscilar al bloque verticalmente. Determine la frecuencia angular del movimiento. Experiencia A Experiencia B M uˆ x 84 C. Di Bartolo

11 7RESPUESTAS Sección 7.I Oscilaciones (Selección) 159 E 160 A 161 C 162 D 163 B 164 B 165 C 166 E 167 D 168 A 169 E 170 C 171 E 120 C. Di Bartolo

12 7.J OSCILACIONES (DESARROLLO) Sección 7.J Oscilaciones (Desarrollo) 172. a. b a. x = τ = 2π M1 M1 M 1 + M 2 Lcos ẋ = v = Lû x. M 1 + M 2, A = ( t π M 1 2 M1 M 1 + M 2 Lcos L, δ = π M 1 + M 2 2, ) M1 = Lsen M 1 + M 2 ( M 1 t ). ( ) 2Mgh x(t)= sen M t. ( ) t, M 1 b. 3Mgh r = 2 ˆx, v = gh 2 ˆx a. b. F = [ 1 (x l 1 )+ 2 (x l 2 )]i, x e = l l , = F = (x x e )i = = y l = x e = l l Las unidades no se indican pero pertenecen todas al Sistema Internacional. C. Di Bartolo 121

13 7RESPUESTAS a. b. c. d. A = 4, τ = 2/5, ω = 5π, = 100π 2. E = 800π 2, v máx = 20π. x(t)=4cos(5π t + 5π/3), ẋ(t)= 20π sen(5π t + 5π/3). t = 4/ a. Δl 1 = x l 01, Δl 2 = h x l 02, F =[ 1 Δl Δl 2 ]i =[ 1 (x l 01 )+ 2 (h x l 02 )]i. b. c. x e = 1l (h l 02 ) F = ( )zi, r = zi, ω = m a. a Máx = A M + m, F Roce Máx = Am M + m. b a. A (M + m)g < μ. ω = 10rad/s, A = 5m. b. V Max = 50m/s en el punto de equilibrio o. a Max = 500m/s 2 en los puntos a una distancia de 5 m de o (uno a derecha y otro a izquierda). c. δ está en el tercer cuadrante, δ = ArcTg(3/4) 3.785radianes C. Di Bartolo

14 7.J OSCILACIONES (DESARROLLO) a. La posición de equilibrio del sistema masa-resorte cambia al colocar al resorte verticalmente. La distancia de la nueva posición de equilibrio al techo es L = l 0 + Mg. b. ω = M. C. Di Bartolo 123

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

(producto escalar, considerando una sola dirección)

(producto escalar, considerando una sola dirección) Definimos trabajo de una fuerza al desplazar un cuerpo, al producto escalar de la fuerza por el desplazamiento realizado: W = F. Δx (producto escalar, considerando una sola dirección) W = F Δx cosθ Calculando

Más detalles

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB;

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB; E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 5: VIBRACIONES Y ONDAS F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

CAPITULO 11. MOVIMIENTO OSCILATORIO.

CAPITULO 11. MOVIMIENTO OSCILATORIO. CAPITULO 11. MOVIMIENTO OSCILATORIO. Los principales objetivos de los capítulos anteriores estaban orientados a describir el movimiento de un cuerpo que se puede predecir si se conocen las condiciones

Más detalles

Relación Problemas Tema 8: Movimiento Ondulatorio

Relación Problemas Tema 8: Movimiento Ondulatorio 0.- Una partícula vibra según la ecuación Relación Problemas Tema 8: Movimiento Ondulatorio y 0,03 sen 10 t 2 (S.I.) Calcular: a) Amplitud, periodo y frecuencia del movimiento. b) Tiempo mínimo que transcurre

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1) I..S. l-ándalus. Dpto de ísica y Química. ísica º Bachillerato LGUS JRCICIS RSULTS D TRBJ Y RGÍ (BLTÍ DL TM ). Un bloque de 5 kg desliza con velocidad constante por una superficie horizontal mientras se

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Práctica La Conservación de la Energía

Práctica La Conservación de la Energía Práctica La Conservación de la Energía Eduardo Rodríguez Departamento de Física, Universidad de Concepción 30 de junio de 2003 La Conservación de la Energía Un péndulo en oscilación llega finalmente al

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE Objetivos 1. Verificar la ley de Hooke, 2. Medir la constante k de un resorte, y 3. Medir el período de oscilación de un sistema masa-resorte y compararlo

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

Olimpiada Online de Física - OOF 2013

Olimpiada Online de Física - OOF 2013 1. La figura muestra una pieza metálica apoyada sobre une superficie horizontal. Respecto de la tercera ley de Newton, indique verdadero (V) o falso (F) según corresponda. I. El peso y la normal son fuerzas

Más detalles

Fuerza Conservativa. El trabajo hecho por una fuerza conservativa depende sólo de los puntos 1 y 2.

Fuerza Conservativa. El trabajo hecho por una fuerza conservativa depende sólo de los puntos 1 y 2. Fuerza Conservativa Definición 1: El trabajo realizado por una fuerza conservativa es independiente de la trayectoria seguida por la partícula cuando se mueve de un punto a otro. El trabajo hecho por una

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Hernán Vivas C. Departamento de Física Universidad Nacional de Colombia Sede Manizales

Hernán Vivas C. Departamento de Física Universidad Nacional de Colombia Sede Manizales NOTAS DE CLASE FISICA DE OSCILACIONES, ONDAS Y OPTICA Hernán Vivas C. Departamento de Física Universidad Nacional de Colombia Sede Manizales 1 CONTENIDO INTRODUCCIÓN... 3 CINEMÁTICA DEL MOVIMIENTO ARMÓNICO

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, junio 2010. Fase general OPCION A Cuestión 1.- Enuncie la 2 a ley de Kepler. Explique en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y dónde es mínima. Enuncie

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

Ejercicios de FÍSICA DE 2º DE BACHILLERATO

Ejercicios de FÍSICA DE 2º DE BACHILLERATO Movimiento Armónico Simple, Ondas, Sonido Ejercicios de FÍSICA DE 2º DE BACHILLERATO INDICE 1 ONDAS... 2 1.1 MOVIMIENTO ARMÓNICO... 2 1.2 MOVIMIENTO ONDULATORIO... 5 1.3 EL SONIDO... 10 2 INTERACCIÓN GRAVITATORIA...

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema). Dinámica Examen de Física-1, 1 Ingeniería Química Segundo parcial Enero de 013 Problemas (Dos puntos por problema) Problema 1: Un resorte vertical de constante k1000 N/m sostiene un plato de M kg de masa

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 Sede Lima - Facultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos Inicio de Prueba 10:00 A.M. Finalización de Prueba 13:00

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12

Mecánica. Ingeniería Civil. Curso 11/12 Mecánica. Ingeniería ivil. urso / ) eterminar la dirección θ del cable y la tensión F que se requiere para que la fuerza resultante sobre el bidón de la figura sea vertical hacia arriba de módulo 800 N.

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd 1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8 Mecánica. Ingeniería ivil. urso 11/12 Hoja 8 71) Un automóvil está viajando a una velocidad de módulo 90 km/h por una autopista peraltada que tiene un radio de curvatura de 150 m. Determinar el ángulo

Más detalles
Sitemap